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Introduction 
Motivation  
The C++ ecosystem offers multiple implementations of ordered sets, each built upon different 
custom underlying data structures to suit specific needs. However, there is a lack of a 
comprehensive comparative analysis between different implementations of these ordered sets. 
This makes it challenging for developers to decide which implementation to use in their 
everyday code. We want to determine the optimal ordered set implementation in C++ across 
various use cases.  
 

Purpose  
The purpose of this project is to conduct a comprehensive performance analysis of a small 
sample of the most commonly used C++ ordered set implementations. We plan to test them 
under different operations and data characteristics, with the goal of providing empirical 
evidence for selecting the most efficient implementation based on specific use cases. For this 
project, we define efficiency in terms of the fastest execution for each case given we can reject 
the null hypothesis for each combination. See the data collection section for more details. 
 

Problems 
● Which ordered set would be the most efficient for insertion, lookup, and deletion?  
● Which ordered set would be the most efficient with sorted, reverse sorted, or random 

data? 
 
The main reason for considering the order of data is the behaviour of data structures may be 
different. For example, certain data structures, like balanced trees, require rebalancing, which 
can impact performance. However, the rebalancing frequency may vary based on the order in 
which data is inserted or removed. Similarly, cache efficiency can be influenced by data order as 
well. For instance, traversing data in order increases the likelihood that the next element is 
already cached. 
 

Data Collection 
We will generate our data by implementing a minimal version of an ordered set that accepts 
inputs, and we will benchmark the different ordered sets in different scenarios. Our analysis will 
examine performance across various data characteristics for each ordered set implementation. 
These characteristics include performance with sorted data, reverse-sorted data, and 
completely random data. We will also interact with several operations. The three operations we 
have chosen are insertion, value lookup, and deletion. These three are commonly used in the 
context of ordered sets thus making them the most valuable for us to compare in our analysis. 
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Configurations 
We will be testing the following ordered set implementations: 

Library Data Structure Source 

std::set Red-Black Tree cppreference 

boost::avl_set AVL Tree boost 

absl::btree_set B-Tree abseil 

boost::container::flat_set Ordered Vector boost 

boost::splay_set Splay Tree boost 

 

Test Scenarios  
We have crafted ten unique test scenarios covering various interesting real-world use cases 
which we will use to run benchmarking tests, for each of the ordered set implementations. For 
consistency, the data we will be using to run these tests will be an array of randomly generated 
and uniformly distributed data containing 10,000 values called random_data. Each of these 

scenarios will be tested 100 times with each ordered set implementation to get a fair sample 
size of data.  
 

Case # Operation Setup Experiment 

1 insert() Initialize an empty set. Sort random_data in ascending order and 
use it to populate the set. 

2 insert() Initialize an empty set.  Sort random_data in descending order 
and use it to populate the set. 

3 insert() Initialize an empty set.  Leave random_data unsorted and use it 
to populate the set. 

4 find() Populate the set with 
random_data. 

Sort random_data in ascending order and 
search for each value in the set. 

5 find() Populate the set with 
random_data. 

Sort random_data in descending order 
and search for each value in the set. 

6 find() Populate the set with 
random_data. 

Search for each value in random_data 
which we will leave unsorted.  
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7 find() Populate the set with 
random even values. 

Search for random odd numbers, which 
are not present in the set. 

8 delete() Populate the set with 
random_data. 

Use random_data sorted in ascending 
order and delete each value from the set. 

9 delete() Populate the set with 
random_data. 

Use random_data sorted in descending 
order and delete each value from the set. 

10 delete() Populate the set with 
random_data. 

Use random_data unsorted and delete 
each value from the set. 

 
 

Implementation 
Benchmarking an ordered set involves two key stages: generating the data and executing the 
benchmark for each data structure. 
 
Generating Data 
We generated data within a specified range using a fixed seed to ensure reproducibility for 
benchmarking. More specifically, we created 10,000 data points ranging from 0 to 1,000,000 
inclusive. To create randomness in the data we utilized the Mersenne Twister 19937 engine to 
generate the data. However, due to this randomness, some duplicate data was created, 
resulting in 9,527 unique elements. This dataset was consistently used across all experiments 
except for Scenario 7 and was sorted or reverse-sorted for their respective scenarios after 
generation. 
 
For Scenario 7, we maintained the same seed and data range but split the data equally by 
evens and odds instead of using the entire dataset to ensure we had non-existent values. 
 
Running the Benchmark 
Initially, we define setupTasks and tasks as described earlier. In addition to the data structure 
being evaluated, we include a reporter that logs individual benchmark results to a CSV file.  
 
The run function executes the benchmark with a set number of iterations (in our case, 100) to 
collect our samples. Running the benchmark multiple times mitigates the risk of warm-up 
effects. When the program is started from scratch, it may initially take longer to execute the 
same task. This delay is due to various factors, such as the absence of an instruction cache.  
So to increase the stability of the benchmark, we collected data over several iterations. 
 
The setup function manages the execution of setup tasks. For each iteration, we did three 
things: execute the setup tasks, execute the tasks we wanted to benchmark, and report the 
result. Our setup function takes the targeted data structure for that iteration and inserts the 
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setup task into it. Additionally, it is important to note that we do not measure the time taken by 
the setup tasks, as this process is not relevant to our benchmarking objectives. 
 
We surrounded the tasks we wanted to measure, such as insertion, removal, and lookup, by the 
clock_gettime function. This function combined with the CLOCK_PROCESS_CPUTIME_ID 
argument measures the amount of CPU time our enclosed piece of code took to execute. We 
chose to use CLOCK_PROCESS_CPUTIME_ID as it is preferable to other clock types since it 
accurately captures the CPU resources utilized by the process itself, excluding any time the 
process may be in a waiting queue or is being preempted by other processes. 
 

Data Analysis 
Our analysis will use the Kruskal-Wallis test to compare the different implementations of the C++ 
ordered sets and find statistically significant differences between them. Subsequently, we will 
perform the Dunn’s test as our post hoc to determine which means are significant from each 
other. Using the results from Dunn’s test, if the means are significantly different, which we define 
as the p-value < 0.05, we will compare the means of the run times for the two ordered set 
implementations and use that information to determine which implementation is faster. 
 

Data Cleaning and Transformations 
We were able to filter and visualize the data with a scatter plot, histogram, and boxplot to 
evaluate what would need to be done. Although there were outlier points in the data, they were 
kept as it would be untruthful to remove them without cause. Next, we had to normalize the 
data. Upon attempting to normalize with several transformations, our data was extremely 
right-skewed and unable to pass the normal test. Despite having equal variances with the 
Levene test, this meant we could not use the ANOVA test. After resolving that, with the loose 
requirements of our non-parametric tests, the data did not have to undergo much cleaning or 
noise filtering since the tests would simply take the ranked sum means. 
 
Analysis Techniques 
Our initial approach was to use the Analysis of Variance (ANOVA) test for our comparisons to 
find statistical differences combined with Tukey’s Honest Significant Difference (HSD) test as 
our post hoc test for pairwise comparisons. Our data was unable to be normalized leading us to 
pivot to the Kruskal-Wallis test which was able to handle comparisons between more than two 
groups and did not have the limitation of requiring normally distributed data.  
 
For our post hoc analysis, we looked at several methods such as the pairwise Mann-Whitney 
tests with Bonferroni correction and the Conover-Iman test, but ultimately we decided on the 
Dunn’s test. Despite Dunn’s test being known as one of the least powerful and a relatively 
conservative test, we went forward with it for its common pairing with the Kruskal-Wallis test and 
its simplicity. 
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Results 
Findings 
After performing the Kruskal-Wallis test followed by the Dunn’s test we ranked each of the 
implementations for each of our ten cases based on their mean time. The combinations of 
implementations that failed to reject the null hypothesis due to a high p-value in our Dunn’s test 
are listed as ranking in the same position.  
 
Case 1: Insertion of Sorted Data  

Ranking Implementation Mean Time (s)  

 

1 Splay Tree 0.0000522225 

2 Flat Set 0.0001578125 

3 AVL Tree 0.0003288275 

4 B Tree 0.0003821753 

5 Red Black Tree 0.0008416333 

 
Case 2: Insertion of Reverse Sorted Data 

Ranking Implementation Mean Time (s)  

 

1 Splay Tree 0.0000520688 

2 B Tree 0.0002301987 

3 AVL Tree 0.0003160967 

4 Red Black Tree 0.0008006721 

5 Flat Set 0.0031257388 
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Case 3: Insertion of Unsorted Data 

Ranking Implementation Mean Time (s)  

 

1 B Tree 0.0006709288 

2 AVL Tree 0.0006870455 

3 & 4  Splay Tree 0.0011038880 

3 & 4 Red Black tree 0.0011942617 

5 Flat Set 0.00173228201 

 
Case 4: Lookup of Sorted Data  

Ranking Implementation Mean Time (s)  

 

1 & 2 Flat Set 0.0000002238 

1 & 2 B Tree 0.0000002467 

3 AVL Tree 0.0000003059 

4 Red Black Tree 0.0000004113 

5 Splay Tree 0.0001349000 

 
Case 5: Lookup of Reverse Sorted Data 

Ranking Implementation Mean Time (s)  

 

1 & 2 AVL Tree 0.0000003013 

1 & 2 Flat Set 0.0000003358 

3 & 4 B Tree 0.0000004666 

3 & 4 Red Black Tree 0.0000005029 

5 Splay Tree 0.0001381571 
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Case 6: Lookup of Unsorted Data 

Ranking Implementation Mean Time (s)  

 

1 & 2 B Tree 0.0000002387 

1 & 2 Flat Set 0.0000003451 

3 Red Black Tree 0.0000004233 

4 AVL Tree 0.0000011108 

5 Splay Tree 0.0010638475 

 
Case 7: Lookup of Non-Existent Data 

Ranking Implementation Mean Time (s)  

 

1 & 2 B Tree 0.0000002338 

1 & 2 AVL Tree 0.0000002512 

3 Red Black Tree 0.0000003963 

4 Flat Set 0.0000004300 

5 Splay Tree 0.0010998713 

 
Case 8: Deletion of Sorted Data 

Ranking Implementation Mean Time (s)  

 

1 AVL Tree 0.0001541501 

2 B Tree 0.0002510096 

3 Splay Tree 0.0002884075 

4 Red Black Tree 0.0005600041 

5 Flat Set 0.0028890900 
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Case 9: Deletion of Reverse Sorted Data  

Ranking Implementation Mean Time (s)   

 

1 Flat Set 0.0001672320 

2 AVL Tree 0.0002262413 

3 Splay Tree 0.0004078817 

4 & 5 B Tree 0.0004891483 

4 & 5 Red Black Tree 0.0005731628 

 
Case 10: Deletion of Unsorted Data 

Ranking Implementation Mean Time (s)   

 

1 B Tree 0.0006243209 

2 AVL Tree 0.0008736325 

3 Red Black Tree 0.0011701071 

4 Splay Tree 0.0017852308 

5 Flat Set 0.0019858109 

 
Findings Summarized 

 Insertion Lookup Deletion 

r
a
n
k 

Sorted 
Data 

Reverse 
Sorted 
Data 

Unsorted 
Data 

Sorted 
Data 

Reverse 
Sorted 
Data 

Unsorted 
Data 

Non-Exi
stent 
Data 

Sorted 
Data 

Reverse 
Sorted 
Data 

Unsorte
d Data 

1 Splay 
Tree 

Splay 
Tree 

B Tree  
Flat Set 
& B 
Tree 

AVL Tree 
& Flat 
Set 

B Tree & 
Flat Set 

B Tree & 
AVL 
Tree 

AVL Tree Flat Set B Tree 

2 Flat Set B Tree AVL Tree B Tree AVL Tree AVL Tree 

3 AVL 
Tree 

AVL Tree Splay Tree 
& 

Red Black 
tree 

AVL 
Tree 

B Tree & 
Red 

Black 
Tree 

Red 
Black 
Tree 

Red 
Black 
Tree 

Splay 
Tree 

Splay 
Tree 

Red 
Black 
Tree 

4 B Tree Red 
Black 

Red 
Black 

AVL Tree Flat Set Red 
Black 

B Tree & 
Red 

Splay 
Tree 
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Tree Tree Tree Black 
Tree 

5 Red 
Black 
Tree 

Flat Set Flat Set Splay 
Tree 

Splay 
Tree 

Splay 
Tree 

Splay 
Tree 

Flat Set Flat Set 

 
Analysis of Findings 
First, the nature of the data itself impacts the performance of different data structures. We saw 
that each use case had its own ranking of which data structure worked best, and no single data 
structure was universally optimal. For example, splay trees performed especially well on data 
that was already sorted or reverse sorted, because its design brings recently inserted elements 
to the root. Another example is the flat set, which can insert sorted data very quickly since no 
element shifting is needed, but slows down when inserting into an unsorted sequence. 
Conversely, for deletion, it is the other way around: deleting unsorted data in a FlatSet is fast, 
while deleting sorted data is slower because it requires shifting. 
 
Second, we have observed that a cache-friendly data structure can have a significant impact on 
performance. The B-tree is a good illustration of this. Across all operations, insertions, lookups, 
and deletions, on unsorted data, B-trees generally outperform other data structures. We believe 
this is largely due to memory layout: B-trees store nodes in contiguous memory blocks, which 
makes them more cache-efficient. Other balanced trees store each node separately, which is 
less cache-friendly, even though the theoretical time complexity for all these operations remains 
O(log n).  
 

Errors and Limitations 
A stand-out inconsistency in the experiment that we recorded in our findings involves Case 4. 
When going to rank our implementations we observed that the Flat Set and the B Tree are 
unable to be compared due to their high p-value of 0.25 placing them both in the top spot. 
However, when we tried to compare them both to the AVL Tree which has the next largest mean 
time we found that when combined with the Flat Set we got a p-value of 0.22 which would not 
be rejected while the B Tree with AVL gave a p-value of 0.018 with would be rejected. It was 
particularly puzzling since the Flat Set’s meantime was further away than the B Tree’s from the 
AVL Tree. We suspect that since Dunn’s test uses ranked sum means the resulting calculation 
may differ from our simple mean calculation throwing off our ranking. 
 
We also observed that the Red Black Tree typically started up with high benchmark times and 
then settled down to a more stabilized time in almost all of the cases over the course of the 100 
iterations. We did not anticipate that this would have a negative affect on our results. However, it 
is an interesting contrast to note considering the rest of the implementations had comparably 
steady benchmark times throughout the iterations.  
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Future Considerations 
Due to our restriction on time and resources, we were not able to test every possible 
combination of ordered sets, their operations, and types of data. We had to refine our 
experiment and decide on what would be most important to test. First and foremost we wanted 
to create an environment that might replicate a real-world use case for an ordered set. This is 
why we used the insert(), find(), and delete() operations, as these are the most commonly used 
in this context and therefore the most relevant. We also chose to use the random uniformly 
distributed data while sorted, unsorted, and randomly ordered as these would test potential 
best and worst-case scenarios. In the future, if we were to have more time and resources, we 
would like to test a larger number of ordered set implementations, their operations, and types 
of data.  
 

Conclusion 
In this project, we conducted a comprehensive performance analysis of five different ordered 
set implementations under a variety of scenarios. Specifically, we examined the time it took to 
perform single operations, insertions, lookups, and deletions, on datasets with distinct 
characteristics, including sorted, reverse-sorted, and random inputs. Because our data could 
not be normalized, we employed the Kruskal-Wallis and Dunn’s tests to determine statistical 
significance in performance differences. From these tests, we not only established a clear 
ranking among the implementations for each case but also uncovered two key insights: the 
structure of the input data and how each implementation interacts with processor caches both 
play a crucial role in overall efficiency. In other words, when choosing which ordered set 
implementation to use, it is essential to consider both the nature of the data and the 
memory-access patterns involved in order to achieve the best possible performance. 
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