Comparisons of Ordered Set
Implementations in C++

CMPT 358 - Fall 2024

Naoto Kuwayama, _
Mekdim Dereje, _
Denise Siu, _

Introduction

Motivation

The C++ ecosystem offers multiple implementations of ordered sets, each built upon different
custom underlying data structures to suit specific needs. However, there is a lack of a
comprehensive comparative analysis between different implementations of these ordered sets.
This makes it challenging for developers to decide which implementation to use in their
everyday code. We want to determine the optimal ordered set implementation in C++ across
various use cases.

Purpose

The purpose of this project is to conduct a comprehensive performance analysis of a small
sample of the most commonly used C++ ordered set implementations. We plan to test them
under different operations and data characteristics, with the goal of providing empirical
evidence for selecting the most efficient implementation based on specific use cases. For this
project, we define efficiency in terms of the fastest execution for each case given we can reject
the null hypothesis for each combination. See the data collection section for more details.

Problems
e Which ordered set would be the most efficient for insertion, lookup, and deletion?
e Which ordered set would be the most efficient with sorted, reverse sorted, or random
data?

The main reason for considering the order of data is the behaviour of data structures may be
different. For example, certain data structures, like balanced trees, require rebalancing, which
can impact performance. However, the rebalancing frequency may vary based on the order in
which data is inserted or removed. Similarly, cache efficiency can be influenced by data order as
well. For instance, traversing data in order increases the likelihood that the next element is
already cached.

Data Collection

We will generate our data by implementing a minimal version of an ordered set that accepts
inputs, and we will benchmark the different ordered sets in different scenarios. Our analysis will
examine performance across various data characteristics for each ordered set implementation.
These characteristics include performance with sorted data, reverse-sorted data, and
completely random data. We will also interact with several operations. The three operations we
have chosen are insertion, value lookup, and deletion. These three are commonly used in the
context of ordered sets thus making them the most valuable for us to compare in our analysis.

Configurations

We will be testing the following ordered set implementations:

Library Data Structure Source
std::set Red-Black Tree cppreference
boost::avl_set AVL Tree boost
absl::btree_set B-Tree abseil
boost::container::flat_set Ordered Vector boost
boost::splay_set Splay Tree boost

Test Scenarios

We have crafted ten unique test scenarios covering various interesting real-world use cases
which we will use to run benchmarking tests, for each of the ordered set implementations. For
consistency, the data we will be using to run these tests will be an array of randomly generated
and uniformly distributed data containing 10, 000 values called random_data. Each of these

scenarios will be tested 100 times with each ordered set implementation to get a fair sample

size of data.
Case # | Operation Setup Experiment
1 insert() Initialize an empty set. Sort random_data in ascending order and
use it to populate the set.
2 insert() | Initialize an empty set. Sort random_data in descending order
and use it to populate the set.
3 insert() Initialize an empty set. Leave random_data unsorted and use it
to populate the set.
4 find() Populate the set with Sort random_data in ascending order and
random_data. search for each value in the set.
5 find() Populate the set with Sort random_data in descending order
random_data. and search for each value in the set.
6 find() Populate the set with Search for each value in random_data
random_data. which we will leave unsorted.

https://en.cppreference.com/w/cpp/container/set
https://www.boost.org/doc/libs/1_86_0/doc/html/intrusive/avl_set_multiset.html
https://github.com/abseil/abseil-cpp/blob/master/absl/container/btree_set.h
https://www.boost.org/doc/libs/1_64_0/doc/html/boost/container/flat_set.html
https://www.boost.org/doc/libs/1_70_0/doc/html/intrusive/splay_set_multiset.html

7 find() Populate the set with Search for random odd numbers, which
random even values. are not present in the set.

8 delete() [Populate the set with Use random_data sorted in ascending
random_data. order and delete each value from the set.

9 delete() Populate the set with Use random_data sorted in descending
random_data. order and delete each value from the set.

10 delete() | Populate the set with Use random_data unsorted and delete
random_data. each value from the set.

Implementation

Benchmarking an ordered set involves two key stages: generating the data and executing the
benchmark for each data structure.

Generating Data

We generated data within a specified range using a fixed seed to ensure reproducibility for
benchmarking. More specifically, we created 10,000 data points ranging from 0 to 1,000,000
inclusive. To create randomness in the data we utilized the Mersenne Twister 19937 engine to
generate the data. However, due to this randomness, some duplicate data was created,
resulting in 9,527 unique elements. This dataset was consistently used across all experiments
except for Scenario 7 and was sorted or reverse-sorted for their respective scenarios after
generation.

For Scenario 7, we maintained the same seed and data range but split the data equally by
evens and odds instead of using the entire dataset to ensure we had non-existent values.

Running the Benchmark
Initially, we define setupTasks and tasks as described earlier. In addition to the data structure
being evaluated, we include a reporter that logs individual benchmark results to a CSV file.

The run function executes the benchmark with a set number of iterations (in our case, 100) to
collect our samples. Running the benchmark multiple times mitigates the risk of warm-up
effects. When the program is started from scratch, it may initially take longer to execute the
same task. This delay is due to various factors, such as the absence of an instruction cache.
So to increase the stability of the benchmark, we collected data over several iterations.

The setup function manages the execution of setup tasks. For each iteration, we did three
things: execute the setup tasks, execute the tasks we wanted to benchmark, and report the
result. Our setup function takes the targeted data structure for that iteration and inserts the

setup task into it. Additionally, it is important to note that we do not measure the time taken by
the setup tasks, as this process is not relevant to our benchmarking objectives.

We surrounded the tasks we wanted to measure, such as insertion, removal, and lookup, by the
clock_gettime function. This function combined with the CLOCK_PROCESS_CPUTIME_ID
argument measures the amount of CPU time our enclosed piece of code took to execute. We
chose to use CLOCK_PROCESS_CPUTIME_ID as itis preferable to other clock types since it
accurately captures the CPU resources utilized by the process itself, excluding any time the
process may be in a waiting queue or is being preempted by other processes.

Data Analysis

Our analysis will use the Kruskal-Wallis test to compare the different implementations of the C++
ordered sets and find statistically significant differences between them. Subsequently, we will
perform the Dunn’s test as our post hoc to determine which means are significant from each
other. Using the results from Dunn’s test, if the means are significantly different, which we define
as the p-value < 0.05, we will compare the means of the run times for the two ordered set
implementations and use that information to determine which implementation is faster.

Data Cleaning and Transformations

We were able to filter and visualize the data with a scatter plot, histogram, and boxplot to
evaluate what would need to be done. Although there were outlier points in the data, they were
kept as it would be untruthful to remove them without cause. Next, we had to normalize the
data. Upon attempting to normalize with several transformations, our data was extremely
right-skewed and unable to pass the normal test. Despite having equal variances with the
Levene test, this meant we could not use the ANOVA test. After resolving that, with the loose
requirements of our non-parametric tests, the data did not have to undergo much cleaning or
noise filtering since the tests would simply take the ranked sum means.

Analysis Techniques

Our initial approach was to use the Analysis of Variance (ANOVA) test for our comparisons to
find statistical differences combined with Tukey’s Honest Significant Difference (HSD) test as
our post hoc test for pairwise comparisons. Our data was unable to be normalized leading us to
pivot to the Kruskal-Wallis test which was able to handle comparisons between more than two
groups and did not have the limitation of requiring normally distributed data.

For our post hoc analysis, we looked at several methods such as the pairwise Mann-Whitney
tests with Bonferroni correction and the Conover-Iman test, but ultimately we decided on the
Dunn’s test. Despite Dunn’s test being known as one of the least powerful and a relatively
conservative test, we went forward with it for its common pairing with the Kruskal-Wallis test and
its simplicity.

Results
Findings

After performing the Kruskal-Wallis test followed by the Dunn’s test we ranked each of the
implementations for each of our ten cases based on their mean time. The combinations of
implementations that failed to reject the null hypothesis due to a high p-value in our Dunn’s test
are listed as ranking in the same position.

Case 1: Insertion of Sorted Data

Ranking | Implementation Mean Time (s) e

1 Splay Tree 0.0000522225 : 62005 91008 11020 10t :08
2 Flat Set 0.0001578125 |
3 AVL Tree 0.0003288275 B B |
4 B Tree 0.0003821753 i 13:_24 4;_46 9;_07! 02
5 Red Black Tree 0.0008416333 e e e spayes o
Case 2: Insertion of Reverse Sorted Data

Ranking | Implementation Mean Time (s) e

1 Splay Tree 0.0000520688 5 99007 19022 79007 13622 :08
2 B Tree 0.0002301987 D |
3 AVL Tree 0.0003160967 y
4 Red Black Tree 0.0008006721 f m; 99; 5;5! i 02
5 Flat Set 0.0031257388 S SSRGSy *

Case 3: Insertion of Unsorted Data

Ranking

Implementation

Mean Time (s)

P-Values from Dunn's Test

5

Splay Tree

0.0001381571

AviTree Btree

FlatSet RBTree SplayTree
Implementation

1 B Tree 0.0006709288 E 00001 sbeds g :08

2 AVL Tree 0.0006870455 | ;- N NS y

384 |SplayTree 0.0011038880 y

3&4 Red Black tree 0.0011942617 f 15;17 47; M; . B 0z

5 Flat Set 0.00173228201 ’ Mitee Bree Falsel | RSltee. SplayTre *
Case 4: Lookup of Sorted Data

Ranking | Implementation Mean Time (s) T

1&2 |Flat Set 0.0000002238

182 |BTree 0.0000002467 R |

3 AVL Tree 0.0000003059 R .

4 Red Black Tree 0.0000004113 f 119-39 139-54 529-47 E - 0z

5 Splay Tree 0.0001349000 Mo e e ytes .
Case 5: Lookup of Reverse Sorted Data

Ranking | Implementation Mean Time (s) T

1&2 AVL Tree 0.0000003013 i 2080 :08

1&2 | Flat Set 0.0000003358 e |

384 |BTree 0.0000004666 N | .

3&4 Red Black Tree 0.0000005029 f s tm snss o 7 02

Case 6: Lookup of Unsorted Data

Ranking

Implementation

Mean Time (s)

P-Values from Dunn's Test

Flat Set

0.0028890900

AviTree Btree

FlatSet RBTree SplayTree
Implementation

1&2 |BTree 0.0000002387
1&2 |Flat Set 0.0000003451 S |
3 Red Black Tree 0.0000004233 oo [y
4 AVL Tree 0.0000011108 f e 1;5 4;75 i 02
5 Splay Tree 0.0010638475 e e e ytes °
Case 7: Lookup of Non-Existent Data

Ranking | Implementation Mean Time (s) e

182 |BTree 0.0000002338
182 |AVLTree 0.0000002512 R |
3 Red Black Tree 0.0000003963 é—ﬁ o 289705 . 04
4 Flat Set 0.0000004300 f 419-43 229-54 BMOE 1 02
5 Splay Tree 0.0010998713 e e e ytes ’
Case 8: Deletion of Sorted Data

Ranking | Implementation Mean Time (s) e

1 AVL Tree 0.0001541501 5 PIOT Eoem by mem :08
2 B Tree 0.0002510096 . |
3 Splay Tree 0.0002884075 y
4 Red Black Tree 0.0005600041 f o s 5294235 7 02

Case 9: Deletion of Reverse Sorted Data

AviTree

Implementation
FlatSet Btr

RBTree

SplayTree

Ranking | Implementation Mean Time (s)
1 Flat Set 0.0001672320
2 AVL Tree 0.0002262413
3 Splay Tree 0.0004078817
4 &5 B Tree 0.0004891483
4&5 Red Black Tree 0.0005731628

P-Values from Dunn's Test

86e-35 14e-06 37e-32 87e-08

Sl 56e-35 . 846-66 | 062 | 360-12
: 146-06 84066 39e-62 24e-24

37e-32 0.62 3.9e-62 1.1e-10

87e-08 36e-12 24e-24 1.1e-10

AviTree Btree FlatSet RBTree SplayTree

Implementation

-08

06

04

02

0.0

Case 10: Deletion of Unsorted Data

AviTree

Implementation
FlatSet Btree

RBTree

SplayTree

Ranking | Implementation Mean Time (s)
1 B Tree 0.0006243209
2 AVL Tree 0.0008736325
3 Red Black Tree 0.0011701071
4 Splay Tree 0.0017852308
5 Flat Set 0.0019858109

P-Values from Dunn's Test

1.5e-07 4.8e-42 28e-07 3.6e-20

1.5e-07 36e-79 27e-25 24e-47
4.8e-42 36e-79 3e-17 1.2e-05

28e-07 27e-25 3e-17 4.9e-05

36e-20 24e-47 12e-05 4.9e-05 1

FlatSet RBTree
Implementation

SplayTree

-08

06

04

0.2

00

Findings Summarized

Insertion Lookup Deletion
r | Sorted | Reverse | Unsorted | Sorted | Reverse | Unsorted | Non-Exi | Sorted | Reverse | Unsorte
a| Data Sorted Data Data Sorted Data stent Data Sorted d Data
n Data Data Data Data
k
1| Splay Splay B Tree AVL Tree | B Tree & | B Tree & | AVL Tree | Flat Set B Tree
Tree Tree Flat Set & Flat Flat Set AVL
&B Set Tree
2 | Flat Set | B Tree AVL Tree | Tree B Tree [AVL Tree | AVL Tree
3| AVL [AVLTree | Splay Tree | AVL B Tree & Red Red Splay Splay Red
Tree & Tree Red Black Black Tree Tree Black
Red Black Black Tree Tree Tree
tree Tree
4| BTree Red Red AVL Tree | Flat Set Red B Tree & | Splay
Black Black Black Red Tree

Tree Tree Tree Black
Tree
Red Flat Set Flat Set | Splay Splay Splay Splay Flat Set Flat Set
Black Tree Tree Tree Tree
Tree
Analysis of Findings

First, the nature of the data itself impacts the performance of different data structures. We saw
that each use case had its own ranking of which data structure worked best, and no single data
structure was universally optimal. For example, splay trees performed especially well on data
that was already sorted or reverse sorted, because its design brings recently inserted elements
to the root. Another example is the flat set, which can insert sorted data very quickly since no
element shifting is needed, but slows down when inserting into an unsorted sequence.
Conversely, for deletion, it is the other way around: deleting unsorted data in a FlatSet is fast,
while deleting sorted data is slower because it requires shifting.

Second, we have observed that a cache-friendly data structure can have a significant impact on
performance. The B-tree is a good illustration of this. Across all operations, insertions, lookups,
and deletions, on unsorted data, B-trees generally outperform other data structures. We believe
this is largely due to memory layout: B-trees store nodes in contiguous memory blocks, which
makes them more cache-efficient. Other balanced trees store each node separately, which is
less cache-friendly, even though the theoretical time complexity for all these operations remains
O(log n).

Errors and Limitations

A stand-out inconsistency in the experiment that we recorded in our findings involves Case 4.
When going to rank our implementations we observed that the Flat Set and the B Tree are
unable to be compared due to their high p-value of 0.25 placing them both in the top spot.
However, when we tried to compare them both to the AVL Tree which has the next largest mean
time we found that when combined with the Flat Set we got a p-value of 0.22 which would not
be rejected while the B Tree with AVL gave a p-value of 0.018 with would be rejected. It was
particularly puzzling since the Flat Set's meantime was further away than the B Tree’s from the
AVL Tree. We suspect that since Dunn’s test uses ranked sum means the resulting calculation
may differ from our simple mean calculation throwing off our ranking.

We also observed that the Red Black Tree typically started up with high benchmark times and
then settled down to a more stabilized time in almost all of the cases over the course of the 100
iterations. We did not anticipate that this would have a negative affect on our results. However, it
is an interesting contrast to note considering the rest of the implementations had comparably
steady benchmark times throughout the iterations.

Future Considerations

Due to our restriction on time and resources, we were not able to test every possible
combination of ordered sets, their operations, and types of data. We had to refine our
experiment and decide on what would be most important to test. First and foremost we wanted
to create an environment that might replicate a real-world use case for an ordered set. This is
why we used the insert(), find(), and delete() operations, as these are the most commonly used
in this context and therefore the most relevant. We also chose to use the random uniformly
distributed data while sorted, unsorted, and randomly ordered as these would test potential
best and worst-case scenarios. In the future, if we were to have more time and resources, we
would like to test a larger number of ordered set implementations, their operations, and types
of data.

Conclusion

In this project, we conducted a comprehensive performance analysis of five different ordered
set implementations under a variety of scenarios. Specifically, we examined the time it took to
perform single operations, insertions, lookups, and deletions, on datasets with distinct
characteristics, including sorted, reverse-sorted, and random inputs. Because our data could
not be normalized, we employed the Kruskal-Wallis and Dunn’s tests to determine statistical
significance in performance differences. From these tests, we not only established a clear
ranking among the implementations for each case but also uncovered two key insights: the
structure of the input data and how each implementation interacts with processor caches both
play a crucial role in overall efficiency. In other words, when choosing which ordered set
implementation to use, it is essential to consider both the nature of the data and the
memory-access patterns involved in order to achieve the best possible performance.

10

	Comparisons of Ordered Set Implementations in C++
	Introduction
	Motivation
	Purpose
	The purpose of this project is to conduct a comprehensive performance analysis of a small sample of the most commonly used C++ ordered set implementations. We plan to test them under different operations and data characteristics, with the goal of providing empirical evidence for selecting the most efficient implementation based on specific use cases. For this project, we define efficiency in terms of the fastest execution for each case given we can reject the null hypothesis for each combination. See the data collection section for more details.
	Problems

	Data Collection
	Configurations
	Test Scenarios
	Implementation

	Data Analysis
	Data Cleaning and Transformations
	Analysis Techniques

	Results
	Findings
	
	Analysis of Findings
	Errors and Limitations
	Future Considerations

	Conclusion
	
	Resume Accomplishment Statements
	Naoto
	Mekdim
	Denise

